MESO Transport and Dispersion Code

Presented at the BACIMO 2003 Conference Session 3: Transport and Dispersion Monterey, CA

Sept 9-11, 2003

Steve Diehl, ITT Industries, AE&S Mike Armistead, NSWC, Dahlgren Div.

Sponsored by the Naval Surface Warfare Center, Dahlgren Division

Introduction to MESO Transport and Dispersion Code

- Random-Walk Tracer Techniques
- > 3D Time-Dependent Wind Fields
- Spatially-Varying Surface Characteristics
- Complex Terrain
- State-of-the-Art Meteorology
- Full Chem / Bio Capabilities

MESO Stochastic Tracer Techniques

Clouds (Clusters)

Random Walk With Scale-Dependence

- Horizontal: Layer by layer
- Vertical: Whole cloud (but mixing length often limited by proximity to surface.)

Plumes

Horizontal: Langevin

Vertical:

- Stable: Random Walk (Diehl)
- Unstable: Stochastic technique of Franzese et al., 1999, Atmos. Environ. 33,2337-2345

Random Walk Technique: Diehl, et al. 1982, J. Applied Met., **21**, 69-83.

- Rigorously meets well-mixed condition (no drift)
- Numerically fast
- No grid required / good spatial resolution (1 to 40 m vertical)

Diffusivity: $K = f(\sigma_v, \lambda_m)$ Statistical Theory With
Reduction for Droplet Inertia
Above PBL: CAT/Gravity Wave Models

Turbulence Parameterization

Function of: Height (z), Stability (L), Friction Velocity (u_*) , Boundary Layer Height (h, z_i)

- 1) Near Surface,
- 2) Surface Layer,
- 3) Matching Layer, 4) Boundary Layer

Cloud Growth Rate Integral

Horizontal Growth Handled By Layer

Growth Rate Curve Applied to Each Layer

Model Comparison To Measured Vertical Cloud Size

Comparison of Stochastic Plume Tracer Technique to Experiment

MESO Terrain/Surface Modeling

- ➤ 3D Time-Dependent Wind Fields Over Complex Terrain
- ➤ Terrain-Following Tracer Techniques to Prevent Artificial Deposition
- Each Ground Cell Treated Individually:
 - Surface Characteristics (albedo, surface roughness, moisture resistance, vegetation, etc.)
 - Input Meteorology (cloud cover, wind speed, RH, etc.)
 - Predicted Meteorology (u_{*}, L, w_{*}, z_i)

Advection: Predictor / Corrector Technique

Final Boundary Layer Height in Each Activated Ground Cell

Height of PBL (m)

Night Time Heat Flux

Using Modified Method of van Ulden and Holtslag (1983)

Starting Point: Sensible + Latent = Net Radiation - Ground

$$H + \lambda E = Q^* - G$$

IMPROVEMENTS

- 1) Added relative humidity terms to latent heat expression
- 2) Modified psychrometric constant γ using moisture resistance r_s .
- 3) More accurate expression for the net radiation.
- 4) Added improved expression for surface resistance.

Must iteratively solve complex nonlinear expression for u_{*} and *L*. (No multiple roots!)

Predicted Growth of the Convective Boundary Layer

Based on Numerical Integration of Deardorff's (1974) Expression for *dh/dt*

Function of

- Current height h,
- Friction Velocity u_{*},
- Coriolis Parameter f,
- Potential Temp Slope $d\theta/dz$,
- Monin-Obukhov Length ${\it L}$

Predicted Breakup of the CBL Assuming Fixed Winds

- Functional form of pot temp $\theta(z)$ based on profiles found in the literature.
- Add sensible heat flux plus energy conservation to evolve the profile vs time.

Dynamic Second-Order-Closure Model in MESO

- Preliminary Version of MESO Has Been Completed with Dynamic Second-Order Closure Capabilities.
- Numerically Advances the Prognostic Equation For Turbulent-Kinetic-Energy Using 1D Grid Through the Convective Boundary Layer (CBL).
- Important in High Shear Conditions and Uneven Terrain.
 Diffusivities Can Become Four Times Higher Than Seen in Standard Flat-Terrain Boundary Layers.
- Up-To-Date SOC Relations Are Used That Are In Agreement With Measurements and Large Eddy Simulations.
- The Model Uses a Turbulence Master Length Scale That Guarantees A Heat Flux Profile That Is In Agreement With Measured Profiles In Typical CBLs.

Effect of Dynamic 2nd Order Closure on Dispersion For High Shear Winds at White Sand Missile Range

Turbulent Deposition and Vegetation Filtration

MESO Contains Models To Handle:

- Turbulent Deposition of Particles to Rough Surfaces
- Vegetation Filtration

Both Are Strong Functions Of:

- Particle Size and Density
- Friction Velocity (wind speed)
- Atmospheric Stability (Obukhov length scale L)
- Surface Characteristics (surface roughness, characteristic size of the vegetation, vegetation density, wet/dry)

Models are user friendly:

- Select vegetation type
- Input estimate of density from 0. to 1.0.

Turbulent Deposition Model With Vegetation Filtration

MESO Simulation With Droplet Evaporation

Source	Meteorology	
• 100 kg GB at Height = 50 m • 300 μ m MMD (σ_g =1.1) • Initial Puff Size: σ = 2 m • 100,000 Droplet Tracers	5 m/s Wind SpeedMidlatitude Summer10:00 am Release0.7 Ground Cover	 10 °C Surface Air Temperature 0.1 m Surface Roughness 0.3 Surface Albedo

Downloading Meteorology Forecasts to MESO

- Code Developed to Download COAMPS Forecast Grid Data Using METCAST Scripting Language:
 - 6 Hour Dumps at 0.2 Degree Resolution (~20 km cell size)
 - User can select longitude and latitude ranges to download.
 - Winds, Temperatures, Pressures, Cloud Cover, and Terrain (Relative Humidity, Surface Moisture, and Albedo can be easily added.)
 - Vertical winds generated by assuming quasi steady-state and using conservation of mass with dry-air thermodynamics.
 - Downloaded data is reformatted into MESO input met and terrain files.

MESO Simulation Using COAMPS Forecast Download

Dose/Deposition Variance Technique

- 1. Using stochastic tracer techniques, model three scale-dependent "cloud" clusters and one plume cluster. (All three follow the average wind direction.)
- 2. Each cycle, convert plume tracers to path tracers.
- 3. Divide path tracer distribution into three altitude groups: low, medium, high
- 4. Force three "true" cloud clusters to track at height of three path groups.
- 5. Each cycle, save deposition and concentration near the ground (for dose).
- 6. Accumulate Dose/Dep from 3 clouds over many cloud paths.

Comparison Between Average Dose From Plume Tracers and 3-Cloud Many-Paths Method: Code Verification

Conditional Probability of Dose Greater Than Given Value

Comparison Between Average Droplet Deposition From Plume Tracers and 3-Cloud Many-Paths Method: Code Verification

MESO Validation

- High Stack Emissions (old)
- Crystal Mist Test Data (High Altitude and High PBL)
- Dugway Test Data (Surface Deposition)
- Standard Surface Releases
 - Rough Cut with Prairie Grass data
 - Correct vertical and lateral spread with distance
- Pea Sooper (1.0 and 1.5 mm Beads)

Thorough Validation Effort Currently Underway By NSWC

Comparison Between NOAA Lidar and MESO

MESO Urban Modeling Using RUSTIC CFD Predictions

MESO is being modified for urban modeling with RUSTIC:

- Modified to accept RUSTIC (and ADVEDS) wind field and turbulent kinetic energy (TKE) data
- To handle abrupt objects with detached flow
- Modified with an urban plotting capability
 - Dose and deposition plots
 - Concentration plots
 - Streamlines and randomwalk particle paths

Dose from two release points (Note high dose behind building at far end where eddies form and particles circulate.)

Code Status

- Heading into code verification/validation stage by Naval Surface Warfare Center
- A few sections of the code need additional time to mature and to make more "user friendly:"
 - > Forecast Downloads (maturing rapidly)
 - Dynamic Second-Order Closure Model (in the code but in a research form)
 - ➤ Dose / Deposition Variance and Conditional Probability. (Additional code work still needed, but should be complete in FY03.)
 - ➤ Urban Modeling With CFD Winds. Improvements still needed in:
 - 1) CFD turbulence modeling,
 - 2) Atmospheric stability modeling, and
 - 3) Handling of upwind atmospheric turbulence.

